

Structured Epipolar Matcher for Local Feature Matching

Jiahao Chang*, Jiahuan Yu*, Tianzhu Zhang⁺

University of Science and Technology of China

* Equal contribution + Corresponding author

Project Homepage: https://sem2023.github.io

Introduction

- Motivation
- Novelty
- Evaluation
- Visualization
- Conclusion

Introduction

- Local feature matching serves as a fundamental task in many 3D vision tasks

Visual Localization

Structure from Motion (SfM)

- Introduction
- Motivation
- Novelty
- Evaluation
- Visualization
- Conclusion

Motivation

- Appearance feature is not distinguishable enough
 - Anchor points with rich texture can be easily matched with appearance feature
 - But points with **poor texture** (**A**, **B**, **C**) are similar in appearance feature
- Structured feature is ignored
 - Relative position to anchor points can help to find correct matching (A, C) instead of B

Motivation

- **Irrelevant regions** is not properly filtered:
 - Mainstream methods: all-pixel-to-all-pixel attention and matching are applied, accuracy is influenced by irrelevant regions
 - Geometric prior is ignored: according to epipolar constraint (epipolar lines marked as red), correct correspondence of D must rely in blue region, another similar point F can be filtered

- Introduction
- Motivation
- Novelty
- Evaluation
- Visualization
- Conclusion

Novelty

- A unified coarse-to-fine **iterative** architecture named Structured Epipolar Matcher (SEM) taking structured feature and geometric prior into consideration
 - Iterative Epipolar Coarse Matching: iteratively update coarse-stage feature with Structured Feature
 Extractor and Epipolar Attention/Matching
 - Structured Feature Extractor: extract structured feature and fuse into appearance feature
 - **Epipolar Attention/Matching**: apply attention/matching with epipolar constraint

Novelty -- Structured Feature Extractor

- Anchor points (x_i, y_i) : high confidence correspondences
- For each point **Q** (*x*, *y*), calculate structured feature:
 - Coordinate difference:
 - $\Delta X = (x x_1, x x_2, \dots, x x_N)$
 - $\Delta Y = (y y_1, y y_2, \dots, y y_N)$
 - Euclidean distances:
 - $D = \sqrt{(\Delta X)^2 + (\Delta Y)^2}$
- Structured feature:
 - $\mathbf{F}^{sf} = \operatorname{norm}(\Delta X) \parallel \operatorname{norm}(\Delta Y) \parallel \operatorname{norm}(D)$
 - norm for scaling invariance
 - **D** for rotational invariance
- Fusing with appearance feature **F**^{af}:
 - $\mathbf{F} = \mathrm{MLP}(\mathbf{F}^{sf} \parallel \mathbf{F}^{af})$

Novelty -- Epipolar Attention/Matching

- Take epipolar constraint into attention and matching in an iterative manner
- Relative position *R*, *T* obtained from previous matching matrix *M* by RANSAC
- Calculate epipolar lines P_0N_0 and P_1N_1 from R,T by epipolar geometry
- Broaden lines to 2s₀ width regions for error tolerance
- Attention and matching are applied between P₀ and corresponding region, features and matching matrix are updated
- Irrelevant areas are filtered

- Introduction
- Motivation
- Novelty
- Evaluation
- Visualization
- Conclusion

Evaluation

Homography Estimation (HPatches)

Category	Method	Homography est. AUC			matches
Calegory	Method	@3px	@5px	@10px	matches
	D2Net [9]+NN	23.2	35.9	53.6	0.2K
Detector-based	R2D2 [28]+NN	50.6	63.9	76.8	0.5K
	DISK [45]+NN	52.3	64.9	78.9	1.1K
	SP [8]+SuperGlue [32]	53.9	68.3	81.7	0.6K
	Patch2Pix [50]	46.4	59.2	73.1	1.0K
Detector-free	Sparse-NCNet [29]	48.9	54.2	67.1	1.0K
	COTR [16]	41.9	57.7	74.0	1.0K
	DRC-Net [19]	50.6	56.2	68.3	1.0K
	LoFTR [35]	65.9	75.6	84.6	1.0K
	PDC-Net+ [44]	66.7	76.8	85.8	1.0k
	SEM(ours)	69.6	79.0	87.1	1.0K

Visual Localization (InLoc)

Method	DUC1	DUC2			
Wiethiod	$(0.25m,10^\circ)$ / $(0.5m,10^\circ)$ / $(1m,10^\circ)$				
LoFTR [35]	47.5 / 72.2 / 84.8	54.2 / 74.8 / 85.5			
MatchFormer [46]	46.5 / 73.2 / 85.9	55.7 / 71.8 / 81.7			
ASpanFormer [5]	51.5 / 73.7 / 86.4	55.0 / 74.0 / 81.7			
SEM(ours)	52.0 / 74.2 / 87.4	50.4 / 76.3 / 83.2			

Relative Pose Estimation (MegaDepth & ScanNet)

in egab ep in

Catagory	Mathod	Pose estimation AUC			
Calegory	Methou	$@5^{\circ}$	$@10^{\circ}$	$@20^{\circ}$	
Datastar basad	SP [8]+SuperGlue [32]	42.2	59.0	73.6	
Detector-based	SP [8]+SGMNet [4]	40.5	59.0	73.6	
Detector-free	DRC-Net [19]	27.0	42.9	58.3	
	PDC-Net+(H) [44]	43.1	61.9	76.1	
	LoFTR [35]	52.8	69.2	81.2	
	MatchFormer [46]	53.3	69.7	81.8	
	QuadTree [39]	54.6	70.5	82.2	
	ASpanFormer [5]	55.3	71.5	83.1	
	SEM(ours)	58.0	72.9	83.7	

ScanNet (* train on MegaDepth)

Catagory	Method	Pose estimation AUC			
Category	Mculou	$@5^{\circ}$	$@10^{\circ}$	$@20^{\circ}$	
	D2-Net [9]+NN	5.3	14.5	28.0	
Detector-based	SP [8]+OANet [49]	11.8	26.9	43.9	
	SP [8]+SuperGlue [32]	16.2	33.8	51.8	
	DRC-Net [19]*		17.9	30.5	
	MatchFormer [46]*	15.8	32.0	48.0	
Detector-free	LoFTR-OT [35]*	16.9	33.6	50.6	
	SEM(ours)*	18.7	36.6	52.9	

Evaluation

Ablation study on MegaDepth

Index	Multi Loval	SE	SF EAM -	Pose estimation AUC		
muex	wiulu-Level	21.		$@5^{\circ}$	$@10^{\circ}$	$@20^{\circ}$
1				45.6	62.2	75.3
2	\checkmark			46.7	63.1	76.3
3	\checkmark	\checkmark		47.3	64.3	76.8
4	\checkmark	\checkmark	\checkmark	48.1	64.7	77.4

SF = Structured Feature EAM = Epipolar Attention/Matching Different Epipolar Region half-width s₀

0	Pose estimation AUC				
s_0 -	$@5^{\circ}$	$@10^{\circ}$	$@20^{\circ}$		
5	45.6	62.7	76.2		
10	48.1	64.7	77.4		
15	47.5	64.3	77.2		
20	46.7	62.4	76.4		

- Introduction
- Motivation
- Novelty
- Evaluation
- Visualization
- Conclusion

Visualization

Epipolar Banded Areas

Qualitative Comparison

MatchFormer

Ours

- Introduction
- Motivation
- Novelty
- Evaluation
- Visualization
- Conclusion

Conclusion

- A novel Structured Epipolar Matcher (SEM) for local feature matching
- Two novel module:
 - Structured Feature Extractor: generating and fusing structured feature to complement the appearance features
 - **Epipolar Attention/Matching:** utilizing epipolar constraint to filter out irrelevant matching regions as much as possible
- SOTA performance in extensive experimental

Thanks!

Epipolar Matcher for Local Feature Matching

Jiahuan Yu*, Jiahao Chang*, Tianzhu Zhang†

University of Science and Technology of China

* Equal contribution + Corresponding author

Project Homepage: https://sem2023.github.io